Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Cancers (Basel) ; 16(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38730567

RESUMO

(1) Background: The research group has developed a new small molecule, 6-Isopropyldithio-2'-deoxyguanosine analogs-YLS004, which has been shown to be the most sensitive in acute T-lymphoblastic leukemia cells. Moreover, it was found that the structure of Nelarabine, a drug used to treat acute T-lymphoblastic leukemia, is highly similar to that of YLS004. Consequently, the structure of YLS004 was altered to produce a new small molecule inhibitor for this study, named YLS010. (2) Results: YLS010 has exhibited potent anti-tumor effects by inducing cell apoptosis and ferroptosis. A dose gradient was designed for in vivo experiments based on tentative estimates of the toxicity dose using acute toxicity in mice and long-term toxicity in rats. The study found that YLS010 at a dose of 8 mg/kg prolonged the survival of late-stage acute T-lymphoblastic leukemia mice in the mouse model study. (3) Conclusions: YLS010 has demonstrated specific killing effects against acute T-lymphoblastic leukemia both in vivo and in vitro. Preclinical studies of YLS010 offer a new opportunity for the treatment of patients with acute T-lymphoblastic leukemia in clinical settings.

2.
Anal Chim Acta ; 1303: 342530, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609269

RESUMO

MicroRNAs (miRNAs) are potential biomarkers for cancer diagnosis and prognosis, methods for detecting miRNAs with high sensitivity, selectivity, and stability are urgently needed. Various nucleic acid probes that have traditionally been for this purpose suffer several drawbacks, including inefficient signal-to-noise ratios and intensities, high cost, and time-consuming method establishment. Computing tools used for investigating the thermodynamics of DNA hybridization reactions can accurately predict the secondary structure of DNA and the interactions between DNA molecules. Herein, NUPACK was used to design a series of nucleic acid probes and develop a phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP) signal amplification strategy, which enabled the ultrasensitive detection of miR-200a in serum samples. The free and binding energies of the DNA detection probes calculated using NUPACK, as well as the biological experimental results, were considered synthetically to select the best sequence and experimental conditions. A unified dynamic programming framework, NUPACK analysis and the experimental data, were complementary and improved the designed model in all respects. Our study demonstrates the feasibility of using computer technology such as NUPACK to simplify the experimental process and provide intuitive results.


Assuntos
MicroRNAs , Ácidos Nucleicos , Sondas de DNA/genética , MicroRNAs/genética , Razão Sinal-Ruído , Termodinâmica
3.
Cancer Immunol Immunother ; 73(5): 82, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554200

RESUMO

BACKGROUND: Claudin 18.2 (CLDN18.2) is a highly anticipated target for solid tumor therapy, especially in advanced gastric carcinoma and pancreatic carcinoma. The T cell engager targeting CLDN18.2 represents a compelling strategy for enhancing anti-cancer efficacy. METHODS: Based on the in-house screened anti-CLDN18.2 VHH, we have developed a novel tri-specific T cell engager targeting CLDN18.2 for gastric and pancreatic cancer immunotherapy. This tri-specific antibody was designed with binding to CLDN18.2, human serum albumin (HSA) and CD3 on T cells. RESULTS: The DR30318 demonstrated binding affinity to CLDN18.2, HSA and CD3, and exhibited T cell-dependent cellular cytotoxicity (TDCC) activity in vitro. Pharmacokinetic analysis revealed a half-life of 22.2-28.6 h in rodents and 41.8 h in cynomolgus monkeys, respectively. The administration of DR30318 resulted in a slight increase in the levels of IL-6 and C-reactive protein (CRP) in cynomolgus monkeys. Furthermore, after incubation with human PBMCs and CLDN18.2 expressing cells, DR30318 induced TDCC activity and the production of interleukin-6 (IL-6) and interferon-gamma (IFN-γ). Notably, DR30318 demonstrated significant tumor suppression effects on gastric cancer xenograft models NUGC4/hCLDN18.2 and pancreatic cancer xenograft model BxPC3/hCLDN18.2 without affecting the body weight of mice.


Assuntos
Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Camundongos , Animais , Linfócitos T , Interleucina-6 , Macaca fascicularis/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Gástricas/patologia , Imunoterapia , Claudinas/metabolismo
4.
Biomed Pharmacother ; 170: 115867, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101281

RESUMO

Glioblastoma (GBM) is the most aggressive and lethal type of tumor in the central nervous system, characterized by a high incidence and poor prognosis. Thiotert, as a novel dual targeting agent, has potential inhibitory effects on various tumors. Here, we found that Thiotert effectively inhibited the proliferation of GBM cells by inducing G2/M cell cycle arrest and suppressed the migratory ability in vitro. Furthermore, Thiotert disrupted the thioredoxin (Trx) system while causing cellular DNA damage, which in turn caused endoplasmic reticulum (ER) stress-dependent autophagy. Knockdown of ER stress-related protein ATF4 in U251 cells inhibited ER stress-dependent autophagy caused by Thiotert to some extent. Orthotopic transplantation experiments further showed that Thiotert had the same anti-GBM activity and mechanism as in vitro. Conclusively, these results suggest that Thiotert induces ER stress-dependent autophagy in GBM cells by disrupting redox homeostasis and causing DNA damage, which provides new insight for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Autofagia , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias Encefálicas/genética , Apoptose
5.
Pharm Res ; 40(9): 2177-2194, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37610618

RESUMO

PURPOSE: 5-fluorouracil (5-FU) and its prodrug capecitabine are commonly prescribed anti-tumor medications. We aimed to establish physiologically based pharmacokinetic (PBPK) models of capecitabine-metabolites and 5-FU-metabolites to describe their pharmacokinetics in tumor and plasma of cancer patients with liver impairment. METHODS: Models including the cancer compartment were developed in PK-Sim® and MoBi® and evaluated by R programming language with 25 oral capecitabine and 18 intravenous 5-FU studies for cancer patients with and without liver impairment. RESULTS: The PBPK models were constructed successfully as most simulated Cmax and AUClast were within two-fold error of observed values. The simulated alterations of tumor 5-FU Cmax and AUClast in cancer patients with severe liver injury compared with normal liver function were 1.956 and 3.676 after oral administration of capecitabine, but no significant alteration was observed after intravenous injection of 5-FU. Besides, 5-FU concentration in tumor tissue increases with higher tumor blood flow but not tumor size. Sensitivity analysis revealed that dihydropyrimidine dehydrogenase (DPD) and other metabolic enzymes' activity, capecitabine intestinal permeability and plasma protein scale factor played a vital role in tumor and plasma 5-FU pharmacokinetics. CONCLUSIONS: PBPK model prediction suggests no dosage adaption of capecitabine or 5-FU is required for cancer patients with hepatic impairment but it would be reduced when the toxic reaction is observed. Furthermore, tumor blood flow rate rather than tumor size is critical for 5-FU concentration in tumor. In summary, these models could predict pharmacokinetics of 5-FU in tumor in cancer patients with varying characteristics in different scenarios.


Assuntos
Antimetabólitos Antineoplásicos , Neoplasias , Humanos , Capecitabina/uso terapêutico , Desoxicitidina , Fluoruracila , Neoplasias/tratamento farmacológico
6.
Front Immunol ; 14: 1225948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545500

RESUMO

The tumor microenvironment (TME) is a crucial driving factor for tumor progression and it can hinder the body's immune response by altering the metabolic activity of immune cells. Both tumor and immune cells maintain their proliferative characteristics and physiological functions through transporter-mediated regulation of nutrient acquisition and metabolite efflux. Transporters also play an important role in modulating immune responses in the TME. In this review, we outline the metabolic characteristics of the TME and systematically elaborate on the effects of abundant metabolites on immune cell function and transporter expression. We also discuss the mechanism of tumor immune escape due to transporter dysfunction. Finally, we introduce some transporter-targeted antitumor therapeutic strategies, with the aim of providing new insights into the development of antitumor drugs and rational drug usage for clinical cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Evasão Tumoral , Microambiente Tumoral , Neoplasias/terapia , Antineoplásicos/uso terapêutico , Imunidade
7.
Int J Immunopathol Pharmacol ; 37: 3946320231184997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37584255

RESUMO

Ten-eleven translocation 1 (TET1) is a member of the DNA demethylase family that regulates the methylation level of the genome. Dysregulation of TET1 in renal cell carcinoma (RCC) may be associated with RCC progression, but the mechanism of TET1 down-regulation in RCC is not yet known. MiR-183-5p is up-regulated in various tumor tissues and acts as an oncogene. We used Transwell and wound healing assays to test cell invasion and migration. To investigate DNA methylation, we used dot blot, which indicates TET1 enzyme activity. We verified the binding of miR-183-5p and TET1 3'-UTR (untranslated region) using dual-luciferase reporter assay. Our study demonstrated, for the first time, that miR-183-5p can directly repress TET1 expression in RCC. We observed a significant decrease in TET1 expression in RCC specimens, as reported in the literature, and a significant decrease in the concentration of 5hmC in RCC. By aligning the microRNA with a database and using the luciferase reporter gene method, we found that miR-183-5p can inhibit luciferase activity by binding to 453-459 bp of TET1 3'-UTR, leading to inhibition of TET1 expression. Furthermore, down-regulation of TET1 inhibited miR-200c expression and promoted RCC cell invasion and migration. Our findings suggest that in RCC, increased expression of miR-183-5p inhibits the expression of TET1, which in turn inhibits the expression of miR-200c and E-cadherin, both of which are associated with cell adhesion. This leads to the promotion of cell invasion and migration.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação para Baixo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Luciferases/genética , Luciferases/metabolismo , Proliferação de Células/fisiologia , Linhagem Celular Tumoral , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
8.
Biopharm Drug Dispos ; 44(2): 165-174, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36649539

RESUMO

Osimertinib is a highly selective third-generation irreversible inhibitor of epidermal growth factor receptor mutant, which can be utilized to treat non-small cell lung cancer. As the substrate of cytochrome P450 enzyme, it is mainly metabolized by the CYP3A enzyme in humans. Among the metabolites produced by osimertinib, AZ5104, and AZ7550, which are demethylated that is most vital. Nowadays, deuteration is a new design approach for several drugs. This popular strategy is deemed to improve the pharmacokinetic characteristics of the original drugs. Therefore, in this study the metabolism profiles of osimertinib and its deuterated compound (osimertinib-d3) in liver microsomes and human recombinant cytochrome P450 isoenzymes and the pharmacokinetics in rats and humans were compared. After deuteration, its kinetic isotope effect greatly inhibited the metabolic pathway that produces AZ5104. The plasma concentration of the key metabolite AZ5104 of osimertinib-d3 in rats and humans decreased significantly compared with that of the osimertinib. This phenomenon was consistent with the results of the metabolism studies in vitro. In addition, the in vivo results indicated that osimertinib-d3 had higher systemic exposure (AUC) and peak concentration (Cmax ) compared with the osimertinib in rats and human body.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Ratos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Indóis , Acrilamidas/metabolismo , Acrilamidas/farmacologia , Compostos de Anilina/metabolismo , Compostos de Anilina/farmacologia , Microssomos Hepáticos/metabolismo
9.
Toxicol In Vitro ; 88: 105555, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36669674

RESUMO

The widespread use of triazole fungicides in agricultural production poses a potential risk to human health. This study investigates the interaction of five triazole fungicides, i.e., tebuconazole, triticonazole, hexaconazole, penconazole, and uniconazole with human renal transporters, including OAT1, OAT3, OCT2, OCTN1, OCTN2, MATE1, MATE2-K, MRP2, MDR1, and BCRP, using transgenic cell models. For uptake transporters, triticonazole was the substrate of OAT1 and OAT3 and the inhibitor of OCT2. Tebuconazole and penconazole inhibited OCTN2 (100 µM), while tebuconazole, triticonazole, hexaconazole, penconazole, and uniconazole inhibited MATE1 (100 µM). Tebuconazole and hexaconazole inhibited MATE2-K (100 µM). All five triazole fungicides were not substrates or strong inhibitors of MRP2, MDR1, and BCRP efflux transporters. Penconazole inhibited OCT2 with IC50 = 1.12 µM. Penconazole and uniconazole inhibited MATE1 with IC50 = 0.94 µM and 0.87 µM. Tebuconazole and hexaconazole inhibited MATE2-K with IC50 = 0.96 µM and 1.04 µM, indicating that triazole fungicides may inhibit renal drug transporter activity at low concentrations. Triticonazole was transported by OAT1 and OAT3, and the Km values of triticonazole were 5.81 ± 1.75 and 47.35 ± 14.27, respectively. Tebuconazole and uniconazole were transported by OAT3, and the Km values of tebuconazole and uniconazole were 30.28 ± 7.18 and 87.61 ± 31.70, respectively, which may induce nephrotoxicity.


Assuntos
Fungicidas Industriais , Humanos , Fungicidas Industriais/toxicidade , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Proteínas de Membrana Transportadoras , Triazóis/toxicidade
10.
Biochim Biophys Acta Gen Subj ; 1866(11): 130224, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35944837

RESUMO

BACKGROUND: Sodium taurocholate co-transportering polypeptide (NTCP, SLC10A1) is a vital bile acid transporter and the functional receptor of hepatitis B and D virus. The oligomerization of NTCP is important for the structural study of its interaction with HBV preS1 peptide. METHODS: Recombinant NTCPs were expressed in Sf9 host cell using baculoviruses. Function of recombinant NTCP was verified by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method. A quantitative fluorescence resonance energy transfer (FRET) method was established to analyze the interaction between NTCP wild type (WT) and mutants. Co-immunoprecipitation (Co-IP) was used to test the interaction between NTCP variants. RESULTS: Sub-cellular location of recombinant NTCPs varies with the modification of NTCP. Bands of monomer, dimer and oligomers were shown in gel analysis of NTCP. Significant FRET was observed between cyan florescence protein (CFP) tagged NTCP and yellow florescence protein (YFP) tagged NTCP. FRET efficiency between CFP- and YFP-NTCP S267F mutants was lower than WT. Co-IP results showed that S267F interacts with WT NTCP when co-expressed in cell. CONCLUSION: Dimer is the predominant form of NTCP expressed in Sf9 when solubilized with detergent. FRET and Co-IP analysis support that NTCP forms oligomers in Sf9 cell. GENERAL SIGNIFICANCE: Our results showed that NTCP formed oligomers in Sf9 cell. Meanwhile the FRET analysis of NTCP variants further elucidated the molecular mechanism of NTCP oligomerization.


Assuntos
Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Animais , Cromatografia Líquida , Vírus da Hepatite B , Insetos , Células Sf9 , Espectrometria de Massas em Tandem
11.
Cancers (Basel) ; 14(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35565466

RESUMO

Colorectal cancer (CRC) ranks third in incidence rate and second in mortality rate of malignancy worldwide, and the diagnosis and therapeutics of it remain to be further studied. With the emergence of noncoding RNAs (ncRNAs) and potential peptides derived from ncRNAs across various biological processes, we here aimed to identify a ncRNA-derived peptide possible for revealing the oncogenesis of CRC. Through combined predictive analysis of the coding potential of a batch of long noncoding RNAs (lncRNAs), the existence of an 85 amino-acid-peptide, named MEK1-binding oncopeptide (MBOP) and encoded from LINC01234 was confirmed. Mass spectrometry and Western blot assays indicated the overexpression of MBOP in CRC tissues and cell lines compared to adjacent noncancerous tissues and the normal colonic epithelial cell line. In vivo and in vitro migration and proliferation assays defined MBOP as an oncogenic peptide. Immunoprecipitation trials showed that MEK1 was the key interacting protein of MBOP, and MBOP promoted the MEK1/pERK/MMP2/MMP9 axis in CRC. Two E3-ligase enzymes MAEA and RMND5A mediated the ubiquitin-protease-system-related degradation of MBOP. This study indicates that MBOP might be a candidate prognostic indicator and a potential target for clinical therapy of CRC.

12.
Chem Biol Interact ; 361: 109983, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569513

RESUMO

Fenbendazole, a broad-spectrum anti-parasitic drug, can be a potential anti-tumor agent. In this study, we synthesized and purified its derivative, analog 6, intending to achieve improved efficacy in cancer cells and decreased toxicity in normal cells. To evaluate in vitro anti-tumor activities of fenbendazole and analog 6 in different cancer cell lines, a CCK-8 assay was performed, and we found that human cervical cancer HeLa cells were more sensitive to analog 6 than to fenbendazole. Furthermore, we explored the associated mechanism, and our results showed that analog 6 and fenbendazole could induce oxidative stress by accumulating ROS. It not only activated the p38-MAPK signaling pathway, thereby inhibiting the proliferation of HeLa cells and enhancing the apoptosis of HeLa cells, but also significantly induced impaired energy metabolism and restrained their migration and invasion. In addition, the modified analog 6 showed reduced toxicity to normal cells without decreased anti-cancer effect. In conclusion, fenbendazole and analog 6 have multiple targets and strong anti-tumor effects on HeLa cells in vitro and in vivo. The optimized analog 6 could inhibit the viability of HeLa cells with lower toxicity than normal human cells, promising to be developed as an antitumor active compound.


Assuntos
Neoplasias do Colo do Útero , Proteínas Quinases p38 Ativadas por Mitógeno , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Metabolismo Energético , Feminino , Fenbendazol/farmacologia , Células HeLa , Humanos , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 6/metabolismo , Estresse Oxidativo , Neoplasias do Colo do Útero/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Cancers (Basel) ; 14(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35626154

RESUMO

Hypoxic microenvironment and metabolic dysregulation of tumor impairs the therapeutic efficacy of chemotherapeutic drugs, resulting in drug resistance and tumor metastasis, which has always been a challenge for the treatment of solid tumors, including renal cell carcinoma (RCC). Herein, starting from the evaluation of methionine metabolism in RCC cells, we demonstrated that the increased methionine accumulation in RCC cells was mediated by L-type amino acid transporter 1 (LAT1) under hypoxia. Glutathione (GSH), as a methionine metabolite, would attenuate the therapeutic efficacy of oxaliplatin through chemical chelation. Reducing methionine uptake by LAT1 inhibitor JPH203 significantly enhanced the sensitivity of RCC cells to oxaliplatin by reducing GSH production in vitro and in vivo. Therefore, we proposed an effective and stable therapeutic strategy based on the combination of oxaliplatin and LAT1 inhibitor, which is expected to solve the resistance of RCC to platinum-based drugs under hypoxia to a certain extent, providing a meaningful insight into the development of new therapeutic strategies and RCC treatment.

14.
Drug Metab Pharmacokinet ; 43: 100448, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35190308

RESUMO

Bile acids, a series of amphiphilic molecules, can interact with several drug transporters and impact drug ADME. Organic anion transporter 2 (OAT2) is exclusively expressed in the liver and kidney. However, the interaction between bile acids and hOAT2 is unelucidated. In this study, we observed that chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, glycochenodeoxycholic acid (GCDCA), glycodeoxycholic acid, glycoursodeoxycholic acid (GUDCA), taurocholic acid (TCA), taurochenodeoxycholic acid (TCDCA), taurodeoxycholic acid, tauroursodeoxycholic acid could all inhibit uptake activity of hOAT2 while glycocholic acid (GCA) and cholic acid could not. Among them, TCDCA was the strongest inhibitor with IC50 value of 23.01 ± 3.45 µM and GCDCA was the second with IC50 value of 54.26 ± 5.47 µM. Meanwhile, GCA, GUDCA, TCA and TCDCA were identified as substrates of hOAT2. We further found that bile acid mixture (BA mix) could inhibit hOAT2-mediated uptake of cGMP, 5-fluorouracil, irinotecan and paclitaxel. BA mix could reduce the toxicity of paclitaxel to MDCK-hOAT2 cells. In addition, the uptake activity of three SNPs of hOAT2 (C329T, G571A, and G1514A) was all reduced. In conclusion, this study revealed bile acids could interact with hOAT2, providing new insight into the alteration of drug ADME and therapeutic effect mediated by hOAT2.


Assuntos
Ácidos e Sais Biliares , Transportadores de Ânions Orgânicos , Ácidos e Sais Biliares/farmacologia , Transporte Biológico , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ânions Orgânicos/metabolismo
15.
Pharmacol Res ; 177: 106101, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104632

RESUMO

Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second leading cause of cancer-related deaths in the world. The downregulation of farnesoid X receptor (FXR) is frequently founded in CRC patients. The current study found that the decreased expression of FXR in colorectal cancer leads to disorders of bile acids (BAs) metabolism. The altered BAs profile shaped distinct intestinal flora and positively regulated secretory immunoglobulin A (sIgA). The dual regulation of BAs and sIgA enhanced adhesion and biofilm formation of enterotoxigenic Bacteroides fragilis (ETBF), which has a colorectal tumorigenesis effect. The abundance of ETBF increased significantly in intestinal mucosa of colitis-associated cancer (CAC) mice, and finally promoted the development of colorectal cancer. This study suggests that downregulation of FXR in CRC results in BAs dysregulation, and BAs have strong effects on sIgA and gut flora. The elevated BAs concentration and altered gut microbiome are risk factors for CRC.


Assuntos
Infecções Bacterianas , Neoplasias Colorretais , Animais , Bacteroides fragilis/metabolismo , Ácidos e Sais Biliares/metabolismo , Carcinogênese , Transformação Celular Neoplásica , Regulação para Baixo , Humanos , Imunoglobulina A Secretora/metabolismo , Camundongos
16.
Chem Res Toxicol ; 35(3): 422-430, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35147423

RESUMO

Hand-foot syndrome (HFS) is a major adverse reaction to capecitabine (CAP). The exact pathogenesis of this disease remains unclear. In this study, metabolomics combined with cell RNA sequencing was used to study the mechanisms of CAP-induced HFS. The murine model of HFS was constructed by intragastric administration of CAP or its metabolites. Quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assays were used to verify the mechanisms. Metabolomics showed the phosphatidylinositol signaling pathway and amino acid and fatty acid metabolism to be the major metabolic alterations related to the occurrence of HFS. Transcriptomics profiles further revealed that the cytokine-cytokine receptor interaction, IL17 signaling pathway, Toll-like receptor signaling pathway, arachidonic acid metabolism, MAPK signaling pathway, and JAK-STAT3 signaling pathway were the vital steps in skin toxicity induced by CAP or its metabolites. We also verified that the inflammation mechanisms were primarily mediated by the abnormal expression of interleukin (IL) 6 or IL8 and not exclusively by COX-2 overexpression. Finally, the P38 MAPK, NF-κB, and JAK-STAT3 signaling pathways, which mediate high levels of expression of IL6 or IL8, were identified as potential pathways underlying CAP-induced HFS.


Assuntos
Síndrome Mão-Pé , NF-kappa B , Animais , Capecitabina/efeitos adversos , Síndrome Mão-Pé/etiologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Camundongos , NF-kappa B/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Eur J Pharmacol ; 908: 174367, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34303661

RESUMO

Metastatic colorectal cancer (mCRC) has long been lethal despite the continuous efforts of researchers worldwide to discover and improve therapeutic regimens. Thanks to the emergence of long non-coding RNAs (lncRNAs), which has strongly reshaped our inherent perspectives on the pathophysiological patterns of disease, research in the field has been reinvigorated. Here, we focus on current understanding of the modes of action of lncRNAs, and review their regulatory roles in metastatic colorectal cancer, and discuss correlated potential lncRNA-based therapeutics. All of the discussed studies share clear and promising perspectives on future diagnostic and therapeutic remedies for metastatic colorectal cancer.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs , RNA Longo não Codificante
18.
Cell Death Dis ; 12(6): 532, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031358

RESUMO

Human intestinal peptide transporter PEPT1 is commonly repressed in human colorectal cancer (CRC), yet its relationship with sensitivity to the common CRC treatment ubenimex has not previously been elucidated. In this study, we confirmed PEPT1 suppression in CRC using real-time quantitative polymerase chain reaction and western blotting and then investigated the underlying epigenetic pathways involved using bisulfite sequencing, chromatin immunoprecipitation, siRNA knockdown, and reporter gene assays. We found that PEPT1 transcriptional repression was due to both DNMT1-mediated DNA methylation of the proximal promoter region and HDAC1-mediated histone deacetylation, which blocked P300-mediated H3K18/27Ac at the PEPT1 distal promoter. Finally, the effects of the epigenetic activation of PEPT1 on the CRC response to ubenimex were evaluated using sequential combination therapy of decitabine and ubenimex both in vitro and in xenografts. In conclusion, epigenetic silencing of PEPT1 due to increased DNMT1 and HDAC1 expression plays a vital role in the poor response of CRC to ubenimex.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Transportador 1 de Peptídeos/genética , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Metilação de DNA/efeitos dos fármacos , Sinergismo Farmacológico , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Ácidos Hidroxâmicos/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Leucina/administração & dosagem , Leucina/análogos & derivados , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transportador 1 de Peptídeos/metabolismo , Vorinostat/administração & dosagem , Vorinostat/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Biomedicines ; 9(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946595

RESUMO

Multidrug resistance-associated protein 4 (MRP4), a member of the adenosine triphosphate (ATP) binding cassette transporter family, pumps various molecules out of the cell and is involved in cell communication and drug distribution. Several studies have reported the role of miRNAs in downregulating the expression of MRP4. However, regulation of MRP4 by circular RNA (circRNA) is yet to be elucidated. In this study, MRP4 was significantly upregulated in hepatocellular carcinoma (HCC) tissues compared to the adjacent noncancerous tissues. Computational prediction, luciferase reporter assay and miRNA transfection were used to investigate the interaction between miRNAs and MRP4. miR-124-3p and miR-4524-5p reduced the expression of MRP4 at the protein but not mRNA level. Circular RNA in vivo precipitation and luciferase reporter assays demonstrated that circHIPK3, as a competitive endogenous RNA, binds with miR-124-3p and miR-4524-5p. Further, knockdown of circHIPK3 resulted in downregulation of MRP4 protein, whereas cotransfection of circHIPK3-siRNA and miR-124-3p or miR-4524-5p inhibitors restored its expression. In conclusion, we report that miR-4524-5p downregulates the expression of MRP4 and circHIPK3 regulates MRP4 expression by sponging miR-124-3p and miR-4524-5p for the first time. Our results may provide novel insights into the prevention of MRP4-related proliferation and multiple drug resistance in HCC.

20.
Biochem Pharmacol ; 188: 114546, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33838133

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. The failure of chemotherapy in HCC patients is partly due to inadequate intracellular drug accumulation caused by abnormally expressed drug transporters. Human organic anion transporter 2 (hOAT2), a transporter mainly expressed in liver and kidney, is responsible for uptake of various antineoplastic drugs such as 5-fluorouracil (5-FU). Among 32 pairs of human HCC samples, we preliminarily found that OAT2 was suppressed in HCC tissues compared with matched tumor-adjacent tissues at both mRNA and protein levels, which resulted in 5-FU resistance in HCC. However, the epigenetic regulatory mechanisms of OAT2 downregulation have not been investigated. In this study, we first proved it was histone hypoacetylation rather than DNA hypermethylation that participated in transcriptional repression of OAT2 in two HCC cell lines (BEL-7402 and SMMC-7721). In general, there were two pathways confirmed using tissues and cells: 1) Increased histone deacetylase sirtuin 7 (SIRT7) mediated loss of histone 3 lysine 18 acetylation (H3K18ac) at the promoter of OAT2 and inhibited its transcription. 2) More histone deacetylase 7 (HDAC7) instead of lysine acetyltransferase 8 (KAT8) enrichment at the promoter of OAT2 led to low levels of histone 4 lysine 16 acetylation (H4K16ac). Further, we found that histone deacetylases inhibitor vorinostat (SAHA) could reverse histone hypoacetylation state to activate OAT2 transcription and enhance uptake of classic OAT2 substrate zidovudine. Therefore, we evaluated the effect of combining SAHA and 5-FU and the results demonstrated that SAHA could sensitize HCC cells to 5-FU. Collectively, we proposed such a combination treatment to overcome 5-FU resistance in HCC from the perspective of epigenetically restoring OAT2.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fluoruracila/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/biossíntese , Neoplasias Hepáticas/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Acetilação/efeitos dos fármacos , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Relação Dose-Resposta a Droga , Fluoruracila/uso terapêutico , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Histona Desacetilases/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Vorinostat/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA